Collaborators and Funding

STEADMAN HAWKINS

CLINIC of the CAROLINAS

National Institutes of Health Turning Discovery Into Health

OrthO-X Team Members

PI: Jeremy Mercuri, Ph.D. Assistant Professor Department of Bioengineering

Correspondence: 313 Rhodes Research Center Clemson University Clemson, SC 29634

Email: jmercur@clemson.edu

Phone: 864-656-0978

Graduate Researchers

(Left to Right) Eric Schatzer, Ryan Borem, Mackenzie Bowman, Alan Marionneaux, Joshua Walters

Undergraduate Creative Inquiry

Alex Boulez, Victor Casler, Courtney Doyle, Alex Garon, Austin Hensley, Christopher Rood, Karenna Smith, Nikki Wyman

ndated 23 April 201

Mission Statement:

"To improve clinical outcomes for patients suffering from musculoskeletal conditions through the development and application of biomaterials and stem cell technologies in collaboration with clinicians and industry leaders."

Research Interests:

- Orthobiologics
- Tissue Engineering
- Regenerative Medicine
- Intervertebral Disc Therapeutics
- Osteochondral Implants
- Mesenchymal Stem Cell Research
- In Vitro and In Vivo Musculoskeletal Models

Research Areas

Translational Technologies

Annulus Fibrosus Repair Patch (AFRP)

A Multi-laminate Barrier for Prevention of Re-herniation and Retention of NP Replacements

- Angle-ply, mimetic structure
- · Acellular, xenogenic material
- Simple assembly and processing
- Comparable mechanical properties
- Supports cell seeding
- U.S. Patent Serial No: 15/758,528

Acellular Bovine Nucleus Pulposus (ABNP)

- A Decellularized Nucleus Pulposus Replacement
- Acellular, xenogenic material rich in aggrecan and collagen type 2
- Cytocompatible
- · Mechanically Competent
- Native Architecture
- Batch decellularization
- Patent Application No: PCT/US2016/050689

Acellular IVD (aIVD) Xenograft

A Decellularized Whole Disc Replacement Acellular, xenogenic material comprising intact NP and AF

- · Similar to human IVD
 - · Size and geometry
 - · Native micro-architecture
 - Biochemical composition
 - · Mechanical properties
- Osmotically Active

Osteochondral Plug (OCP)

An Off-the-Shelf Implant for Focal Osteochondral Defects

· Biomimetic, tri-layered structure · Polymer-mineral composite

cm 1 2

- Biological cartilage analog
- - 62/638,422
 - 62/638,530

Pathophysiology Intervertebral Disc Degeneration (IDD)

We incorporate several models into our methods when evaluating the pre-clinical efficacy of our implants, including an ex vivo bovine kinematic model and an in vivo ovine chemonucleolytic model.

6mm Biopsy

Removed from AF

Excision of **Nucleus Pulposus**

Defect filled with ABNP

Annuloto

Discectomy

Repair

Stem Cell Therapies

Amnion Mesenchymal Stem Cells (hAMSCs)

- By-product cell source
- · Minimal ethical concerns
- No donor site morbidity
- · High yield per tissue volume
- Allogenic transplantation
- "Youthful" phenotype with Immunomodulatory Capacity

Chondroprotective Effect of hAMSCs In Vitro

hAMSCs have shown superior chondrogenic potential compared to adipose-derived stem cells when exposed to inflammation in vitro.

Mitigation of Osteoarthritis (OA)

hAMSC Chondroprotection has been investigated using in vivo models:

- Dunkin Hartly Guinea Pig · Model: Naturally Onset OA Rat Meniscectomy
 - Model: Post-traumatic OA

- Low cost, scalable manufacturing
- · Established single-step implantation
- · U.S. Patent Serial No:

and covered with AFRP Biochemical/Histological Analysis

